
Transport in random networks in a field: interacting particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 2973

(http://iopscience.iop.org/0305-4470/20/10/039)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 2973-2987. Printed in the U K  

Transport in random networks in a field: interacting particles 

Ramakrishna Ramaswamyt$ and Mustansir Barmat 
+Tats Institute of Fundamental Research, Homi Bhabha Road, Bombay-400005, India 
$School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India 

Received 16 July 1986, in final form 1 December 1986 

Abstract. Transport through a random medium in a external field is modelled by particles 
performing biased random walks on the infinite cluster above the percolation threshold. 
Steps are more likely in the direction of the field-say downward-than against. A particle 
is allowed to move only onto an empty site (particles interact via hard core exclusion). 
Branches that predominantly point downwards and backbends-backbone segments on 
which particles must move upwards-act as traps. We have studied the movement of 
interacting random walkers in branches and backbends by Monte Carlo simulations and 
also analytically. In the full network, the trap-limited current flows primarily through the 
part of the backbone composed of paths with the smallest backbends and its magnitude 
in high fields is estimated. Unlike in the absence of interactions, the drift velocity does 
not vanish in finite fields. However, i t  continues to show a non-monotonic dependence 
on the field over a sizeable range of density and percolation probability. 

1. Introduction 

Particle transport in a disordered medium is often modelled by random walks on a 
random network [I]. The properties of walks are influenced strongly by the nature of 
connections in the random medium. For instance, if the disorder is such that the 
medium resembles a random fractal, the mean-squared displacement of an unbiased 
random walker grows anomalously slowly with time and the diffusion constant vanishes 
both in the absence [2] and presence [3] of interactions between walkers. However, 
if the disorder is milder and the large-distance connectivity properties remain similar 
to those of a homogeneous medium, then diffusion remains regular and qualitatively 
similar to that in the homogeneous case. 

The application of an external field which induces a bias in a given direction leads 
to a new behaviour [4-201. Even when disorder in the sense discussed above is mild, 
transport properties can be quite unusual and very different from those in the 
homogeneous medium. In this paper, we investigate the properties of an assembly of 
particles performing biased random walks on a random network, with hard core 
exclusion between particles. 

Realisations of the problem may occur in various situations. One example is 
sedimentation in poorly connected porous materials. The directionality is imposed 
externally and globally: the field acts in a uniform manner on all parts of the network, 
e.g. gravity in the sedimentation problem. This is in contrast to systems in which the 
bias varies from one location to another, for example a current-dependent bias appropri- 
ate to hydrodynamic dispersion in porous media [21], or models with a random 
assignment of local directionality [22-251. This latter case cannot in general be 
described in terms of a potential energy except in one dimension [24,25] and produces 
effects different from those seen here. 
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In related earlier work, Barma and Dhar [7] studied transport of non-interacting 
particles with a uniform external bias on the infinite cluster in percolation with bond 
occupation probability p .  We continue to use this model of the disordered medium, 
which includes the homogeneous medium ( p = l ) ,  mild disorder ( p c  < p < 1) and strong 
disorder ( p = p c )  as special cases. They found that the drift velocity varies non- 
monotonically with the field for 1 > p > p c .  The physical reason underlying this effect 
relates to the structure of the infinite percolation cluster (see figure 1): to paths which 
connect opposite faces of the medium (e.g. AB or CD) are attached branches of 
arbitrary length (e.g. PQ), which constitute dead-ends for particle transport. When a 
particle enters a branch which points predominantly along the field, it gets trapped 
for a long time. To exit from the branch and contribute to the flow, it must travel 
against the direction of the bias and this gets increasingly difficult as the field increases. 
Even on the backbone alone, particle motion is hindered in backbends, which are 
those portions of the backbone where particles must again travel against the direction 
of the bias (see HK in figure 1). Trapping effects are more pronounced in stronger 
fields and the competition between drift and trapping leads to the non-monotonicity 
discussed above. Furthermore, based on estimates for the occurrence of a trap (either 
a branch or a backbend) of length I (exponentially small in I ) ,  the net (macroscopic) 
distance moved, R (  t ) ,  was found to grow as t k  with k < 1 for bias exceeding a critical 
value [ 8 , 9 ] .  This implies an asymptotic, long-time drift velocity which vanishes in 
strong fields [7]. A vanishing mobility was also found by Ohtsuki [lo] in a study of 
the motion of a single particle through the spaces between randomly packed hard 
spheres. Bottger and Bryskin [4] modelled hopping transport in disordered semicon- 
ductors by a percolation model and found that the conductivity remained non-zero 
for all finite fields. However, as discussed in § 6, their conclusions seem to be valid 
only when interparticle interactions are included. 

In Monte Carlo studies of non-interacting biased random walkers on percolation 
clusters ( p  > p c )  the velocity U is found to vary non-monotonically with bias [ 12, 131. 
The available data neither clearly confirm nor preclude a strong-field U = 0 regime, 

A r 

( U 1  ( b l  

Figure 1. ( a )  A portion of the infinite percolation cluster is illustrated, with the backbone 
shown bold.  The field acts downward and  particles may get trapped in a branch like PQ 
or a backbend like HK.  ( b )  The random comb is a model t o  illustrate branch-trapping. 
The broken curve is a sketch of the steady-state density profile in a branch. The length .I 
marks the point beyond which the density is close to  maximal. 
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though this does seem compatible. At p = p c ,  Monte Carlo simulations showed R ( t )  
growing even slower than any power [ 141 consistent with the vanishing of k at criticality 
[8,9]. In  simulations with a topological bias (which acts outward from a given origin 
along network paths) the evidence for a transition to a t' = 0 regime for p > p c  is clearer 
[17] .  With topological bias, branches act as traps while backbends d o  not. Thus 
topological bias would not be expected to mimic applied fields faithfully in situations 
in which backbends determine flow rates (as with interacting particles, see below). 

In the present paper, we study the effects of interactions between particles: these 
are mutually repelling with hard core exclusion and  move on the infinite percolation 
cluster in the presence of an  external bias. Monte Carlo studies [ 19,201 of this system 
indicate that the average displacement of particles behaves non-monotonically with 
the density of particles. In  this paper, we focus on steady-state properties and find 
that, with interactions included, the drift velocity is always non-zero but shows non-  
monotonicities as functions of the field and density. 

This paper is organised as follows. In the next section we describe the model 
system and  the incorporation of interactions and bias. Facts about percolation that 
are germane to the present study are summarised. Section 3 deals with the trapping 
of particles in branches. In § 4,  particle transport on backbends is described and the 
results of Monte Carlo simulations and an approximate treatment of the master equation 
are presented. Transport properties of the entire random network are examined in 5 5 ,  
which is followed by a summary and discussion in 5 6. 

2. The model 

2.1. Kinetics 

In order to specify the configuration of the system, we must specify the occupation 
number n, of each site i of the random network. Hard core exclusion forbids more 
than one particle on each site, so that n, is either 0 or 1 .  The evolution of a configuration 
{ n }  occurs through interchanges of particle-hole pairs (Kawasaki dynamics). The 
master equation fot the time dependence of the probability P ( { n } )  of configuration 
{ n }  is 

Configuration { n } ,  is obtained from { n }  by replacing a particle (hole) in { n }  at site i 
by a hole (particle) and performing the same operation at a neighbouring sitej, keeping 
site occupations on all other sites unaltered. f i , = 1 - n, is the number of holes on site 
i, and factors like nlfi, arise in equation ( 1 )  as a particle interacts through hard core 
exclusion, and  can hop  only if there is a hole to accommodate it. W,, is the probability 
per unit time that a particle at site i will be exchanged with a hole at site j ,  and is 
non-zero only if i and j are connected nearest-neighbour sites. 

The external field is modelled by making the random walks biased, namely by 
making W,, asymmetric. We assume that the field is oriented so that it has an equal 
component along every bond of the network. The hopping rate in the direction of the 
field (respectively against it) is W (  1 + g )  (respectively W (  1 - g))  where W is an  
elementary hopping rate unless the bond is missing (see below), in which case it is 
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zero. The ratio of forward to backward hopping rates is related to the field strength 
E, inverse temperature p and lattice spacing a by 

(1 + g ) / ( l -  g )  = epEo = eo’L‘g). (2) 

This equation defines a bias-induced length L(g) which plays an important role in the 
theory. 

This system has been studied earlier [26] with attractive interactions between 
neighbouring particles (when interesting phase transitions occur in the current-carrying 
steady state), but on a non-random lattice. Also the velocity and diffusion constant 
have been computed exactly in one dimension [27]. 

2.2. The random network 

As a model of the random network, we consider the infinite cluster in the percolation 
problem with bond occupation probability p .  If the bond between nearest-neighbour 
sites i and j is absent, W!, = W,, = 0; if it is present, W,, = W (  1 * g) and W,l = W (  17 g) ,  
the sign being chosen according to whether E -  ( i  - j )  is positive or negative. 

As p varies from 1 (the pure lattice) to the critical percolation concentration p c ,  
the correlation length 6 varies from 0 to infinity. 6 is a measure of the linear extent 
of a typical finite cluster [28]. At p = p c ,  the network is a random fractal. In the 
intermediate mild-disorder regime p c  < p < 1 ,  the network has the same connectivity 
properties as the pure system on length scales much greater than 6. 

One may distinguish between two types of sites on the infinite cluster. A site is on 
the backbone if there are at least two non-intersecting paths leading from it to infinity; 
otherwise it belongs to a branch-a cluster of sites attached to the backbone at a single 
point. Recognising that large branches are similar to large finite clusters, we expect 
that the probability of occurrence of a branch of linear extent R >> 6 is - exp(-R/[). 

The external field imposes an overall directionality on the problem. It is further 
necessary to define backbends which are those segments of the backbone which 
correspond to backward excursions (with respect to the field) of a path connecting 
one side of the sample to the other. Backbends, called returns by Bottger and Bryskin 
[4], are important in the present problem as they limit the current that flows through 
the network in strong external fields (gG l ) ,  as discussed later in P O  4 and 5. 

Above the directed percolation concentration p d ,  there are backbend-free (directed) 
paths which span the sample [29]. Consider a (spanning) path with the constraint 
that every backbend is of length 1 .  One can define [30], analogous to pdr a critical 
concentration pb(l)  < P d ,  such that there are infinitely long paths satisfying this con- 
straint. Similarly, one can find P b ( l ) ,  which is the threshold for proliferation of paths 
with the constraint that backbends are of length at most 1. I t  is clear that & ( l )  has 
the limits pb(0) = P d  and pb(cD) = p c .  Alternatively, for given p c  < p < P d ,  one can define 
a minimal backbend length 5 ( p )  as the smallest integer such that there are spanning 
paths with the constraint that every backbend on the path is at most of length < ( p ) .  
For p > p d ,  we have ( ( p )  = 0, whereas l ( p )  diverges at p + p : .  A heuristic argument 
[30] shows that 5 ( p )  =constant x 5 as the percolation threshold pc  is approached. 

Such backbend-constrained paths play a very important role in the transport of 
interacting particles. As will be discussed below, in very strong fields such paths are 
traversed in the shortest times (as opposed to typical ‘chemically’ shortest paths [31] 
on which arbitrarily long ( >> { ( p ) )  backbends occur, albeit exponentially rarely). On 
the Bethe lattice, 5 ( p )  has been calculated explicitly [30]. Asp + p c ,  the ratio of lengths 
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of the chemically shortest and 6-constrained paths is expected to approach a constant 
( S  1). On the Bethe lattice, for instance, this ratio is 2 / ~  independent of the coordina- 
tion number. 

3. Branch trapping 

In studying the role played by branches in trapping particles, we consider only those 
branches which point predominantly in the direction of the field (e.g. branch PQ in 
figure 1, as opposed to FG). A simple model of random network on which some 
explicit calculations relating to branch trapping can be done is the random comb [9] 
(shown in figure 1) which consists of a linear backbone, from each site of which 
emanates a linear branch of random length. The field has equal components along 
the backbone and branches. Transport properties in the random comb may be expected 
to mimic those on the infinite cluster for p > pd. But before turning to the comb as a 
whole, we study the motion of particles in a single branch. 

3.1. Dynamics in a single branch 

In the steady state, there is no current in the branch and the particles in the branch 
are described by the Hamiltonian 

X = - E a  2 knk. 
k = O  

(3) 

The site label k is 0 at the point where the branch is attached to the backbone and 1 
at the bottom of the branch. On introducing the fugacity z, it is straightforward to 
evaluate the grand partition function 

and the mean density P k  = ( n k )  at site k. On eliminating z in favour of the density pO 
at the attachment point, we have 

The density profile is sketched in figure 1. If po<< 1, the density P k  rises approximately 
exponentially until it reaches values of the order of unity. This happens at a depth 
approximately given by 

For ka >> ’2, the density is close to the saturation value of one particle per site. 
Now consider fluctuations in which particles are driven out from the branch. Had 

there been no interactions between particles, a particle at the bottom of the branch 
would have had to surmount a potential barrier Ela to escape. The mean escape time 
in the non-interacting case is then given by Kramers’ formula T -  e x p ( l a / l ( g ) ) .  This 
formula holds provided la >> L ( g ) .  In the presence of interactions, but with a fixed 
number n of particles in the branch, the first-passage time for all n particles to cross 
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a site I' has been shown [32] to grow as r - exp n( I - l ' ) /L (g )  provided n << L ( g ) / a  << 
( I  - 1') << 1. However, the fixed number (of particles) constraint is not quite appropriate 
for a branch of the random comb; instead, the mean density po at the attachment point 
should be specified. In this case, the typical time taken for a particle at site k to exit 
from the branch can be estimated from the ratio of the full grand partition function 
Z(z ,  g )  to a constrained grand partition function Zk( z, g ) ,  where the constraint is that 
there are no particles above site k, except at site 0. (A similar procedure gave the 
correct asymptotic behaviour in the fixed-n case [32].) This yields 

The leading behaviour of rk is different depending on the relationship of the depth k 
to A: 

rk - e x p ( k a / L ( g ) )  if ka << A i 8a )  

rk - exp( k2a /2L(g ) )  if ka >> A.  ( 8 b )  

In the latter case, the density is so high that particles find i t  very hard to exit and 
remain in the branch for the most part. 

3.2. Transport through the random comb 

Motivated by the expected distribution of long branches in the infinite percolation 
cluster ( p  > p c ) ,  we assume that a branch of length 1 on the random comb occurs with 
probability 

Prob(l) = [ l  -exp(-a/[)- '] exp ( - l a / t ) .  (9) 

We consider periodic boundary conditions for the backbone. 
The mean time TN taken by any one particle to go around the backbone is related 

to the current j B  in the backbone and the total number of particles A" in the system by 

This is because, in times longer than the emptying-out time of the longest branch in 
any particular finite realisation of the random comb, each particle will be recycled 
through every location of the comb several times and  thus contributes equally to the 
current (see the discussion following equation (12) in [9]). 

On an  arbitrary network, an  expression for the steady-state current between two 
neighbouring sites k and m is 

j =  w ( l + g ) p k ( l - p , ) -  W ( l - g ) p m ( l - P k )  (11) 

where P k ,  p m  are steady-state densities at sites k and m. (Two-site density correlations 
are neglected in this formula, which however is exact in one dimension [27].) On the 
random comb equation (1  1) leads t o t  

(12) j B  = 2 WgPd 1 -po l  

+ Equation (12)  is exact [33] 
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for the current on the backbone, where po is the density of particles on the backbone. 
Furthermore, the total number of particles in the kth branch of length Ik is 

where pk is related to pO by equation (5) .  The total number of particles .V* in the system 
is then 

.b 

h’= c H ( I L ) .  
k = l  

The drift velocity is defined as 

Na  
U =  lim - 

, ? - x  T,c. 

and is found, from equations ( lo)-(  15), to be 

The limit N + allows us to replace -$’/ N by the configuration-averaged quantity 

t i = x P r o b ( l ) n ( l )  (17 
1 

in equation (16). 
The behaviour of U as a function of g is sketched in figures 2 and  3. The bold 

curve shows the result for non-interacting particles while the full curves show results 
for interacting particles. Figures 2 and 3 correspond to different boundary conditions. 

0. 

9 

Figure 2. The drift belocity t in the random comb u i th  t = 3  as a function of bias g, when 
the total number of particles is held fixed. The result for non-interacting particles (bold 
curve) is approached in the limit p + 0. Curves A and B correspond to p = 0.057 and  
p = 0.57. respectively. 
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? O * O h  
0 0.2 0.6 1.0 
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Figure 3. The drift velocity U in the random comb with 5 = 3 as a function of g when the 
backbone density po is held fixed at 0.002 ( A ) ,  0.05 (B) ,  0.1 (C).  The bold curve corresponds 
to the non-interacting particle limit po + 0. 

0.10 c 
5 0.06 

0.02 

0 
1 I I 1 

0.2 0.6 1.0 
PO 

Figure 4. The drift velocity U in the random comb is plotted against the backbone density 
for several values of the bias. g=0.02 (A),  0.08 (B) ,  0.14 (C),  0.50 (D). 
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Figure 2 shows results when the total number of particles K in the system is fixed (e.g. 
the system is closed, as with periodic boundary conditions on the backbone). Figure 
3 shows results for a system which is open and  in contact with a particle reservoir at 
either end in which case the density po on the backbone remains fixed. In  Figure 4 
the variation of velocity as a function of the backbone density po for a fixed value of 
the bias is shown. If the bias is large, U is a non-monotonic function of the filling, as 
was found in Monte Carlo simulations [ 19,201. 

4. Motion on the backbone 

We focus here on the motion of particles on the backbone alone and disregard the 
effect of branches. ( A  discussion of transport on the full network is given in the next 
section.) 

The backbone connects opposite faces of the sample but, for p c < p  < p d ,  even the 
chemically shortest paths have backbends which act as traps and serve to limit the 
current. To simplify matters, we first study transport through a single backbend; this 
is cast as a problem involving interacting random walkers. 

4.1. Dynamics in a single backbend 

Consider a backbend of length 1 (e.g. H K  in figure 1). There is a steady source of 
particles from the top to H and particles are continually drained off at K. This is 
modelled as biased diffusion of hard core particles in the segment [0, I ]  of a I D  lattice, 
with the boundary conditions p ( 0 )  = 1 and  p ( 1 )  = 0. The bias acts towards 0, but the 
boundary conditions force a current to flow from 0 to 1. 

The master equation that describes transport (equation (1)) is invariant under 
interchange of particles and holes and simultaneous relabelling of sites in reverse 
order, i.e. nk + f i l - k .  The boundary conditions respect this symmetry, implying that 
the steady-state density p ( k )  at site k satisfies 

p (  k )  = 1 - p ( l -  k ) .  (18) 

Thus in the steady state the number of particles in the backbend is 1/2 irrespective of 
the strength of the bias g. The principal effect of increasing g is to sharpen the region 
which marks the transition from the particle-rich half of the backbend to the hole-rich 
half. The steady-state profile approaches a step function centred at k = 1/2 as g + 1. 

The current in the steady state is the number of particles crossing site 1 in unit 
time. We have investigated the dependence of the currentj, by Monte Carlo simulation. 
A single Monte Carlo step consists of considering 1 moves of the particles or  holes, 
the sites being chosen at random. The bias acts in an opposite direction for a hole as 
compared to a particle. The results reported here are for averages over 2000 samples, 
and the dynamic evolution is followed for 7500-10000 time units. Results for 
( j , / j , - , , )”n  are plotted in figure 5. For large 1, the ratio is seen to approach 
exp( -a /2L(g) ) ,  implying the asymptotic behaviour 

j ,  - exp( - % / U g ) ) .  (19) 

In the steady state, an  approximate expression for the current j is given by equation 
(1 1). The problem is to find the value of j for which the boundary conditions po  = 1, 
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Figure 5. The nth root of the ratio of Monte Carlo determined currents through backbends 
of lengths I and I - n plotted against I .  We have taken n = 1 for I = 10, 11; n = 5 for I = 14, 
15; n = 10 for i = 20 onwards. The ratio approaches [ (  1 + g ) / (  1 - g)]"2 as I increases. 

pI = 0 hold. Defining y by 

Y n  = l+g-2gpfl  (20) 

Y"+l  = 2 - A/yn (21) 

A = (1 - g') - 2gJ/ W. 

we find the recurrence relation 

with 

(22) 

In the continuum limit ( y n + ,  + y + dy/dx),  equation (21) reduces to the differential 
equation 

dyldx  = 2 - A / y .  (23) 

Upon integration, and enforcing the boundary conditions yo = 1 - g and y ,  = 1 + g, this 
gives 

(g2+2jg)"*= g cothfl(g2+2jg)"*.  (24) 

j = 2g e-R'. (25) 

For long backbends ( 1  >> l ) ,  j is small and is given by 

This agrees with equation (19) when g is small ( L ( g ) =  1/2g), a necessary condition 
for the validity of the continuum approximation made above. 

One can rationalise the result-in particular the factor f in the exponent in equation 
(191-a~ follows. The transport of a single particle through the backbend can be 
viewed as a parallel two-step process. In  the first step, the topmost particle (located 
at site k = 1/2 in large fields) is activated a distance 112 from the top of the backbend. 
The energy cost is fEla and the associated activation time is T,12-exp(fla/L(g)).  In 
the second step, the consequent hole that remains in the steady-state distribution moves 
to the bottom and is filled up, by moving each of 1/2 particles up a distance a. The 
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energy cost is .=;Ha and the time required is T , / ~  again. In reality, of course, both 
processes occur in parallel, but the point is that they are (approximately) causally 
independent of each other and hence occur in a total time of order T , , ~  (not T : , ~ ) .  

The current is then r;j2, and consequently follows equation (19). 

4.2. Transport on the backbone 

When p c  < p < p d ,  any spanning path has several backbends of different lengths in 
series. On a single such path 9 of the backbone (ignoring parallel connections) the 
current j ( S )  that could be supported by it is rate limited by the length 1*(9) of the 
longest backbend (just as in a sequence of chemical reactions, the overall reaction rate 
depends on the slowest process). If L(g)<< l * ( P ) ,  we have 

A?) - exp( -ca l* (S) /Ug) )  (26) 

where c is a constant of order unity. 
If 9 is a typical (chemically) shortest path of the network, it has backbends of all 

lengths 1 with a probability - exp(--l/[( p ) ) ,  where is constant x 6. In a path of 
length aN,  the likely largest 1 is I" - 5 In N ,  while the time taken to cross the backbend 
of length I* is given by the inverse of equation (26). Thus the time required to cover 
a macroscropic distance a N  along a chemically shortest path grows as 

T N - N '  (27) 
with x a ( / L ( g ) .  If (>> L ( g )  (strong fields), the time increases faster than linearly, 
implying a vanishing current in the limit N + m  along a single typical shortest path 
of the network. 

However the current through the full backbone does not vanish. To see this, 
consider paths characterised by a largest allowed backbend length l ( p )  (see 0 2.2). 
Since the length of every backbend on such a path is bounded by l(  p ) ,  the current is 
finite and is given by equation (26) with I*( p )  = l( p ) .  The union of all such ' l  paths' 
forms a finite fraction of the backbone and  would be expected to carry most of the 
current in strong fields; portions with backbends of length much greater than i ( p )  
contribute comparatively little to the current and may be neglected in the strong-field 
limit. 

For p > p d ,  we have l ( p ) = O  and the primary current-carrying network is the 
directed backbone. As p approaches p c ,  on the other hand, the minimal backbend 
length C ( p )  is proportional to the percolation correlation length 6 and diverges [30]. 
We then expect that as p + p c ,  

j - exp(  - ' P E  ) 
( P  - P c ) "  

where the exponent v characterises the divergence of ( in that limit, and b is a constant 
of order unity. 

5. Transport in the network 

In a discussion of transport properties, it is necessary to distinguish between the current 
and  the drift velocity as the two may behave differently. With suitable boundary 
conditions (spelt out below) the steady-state current J, i.e. the number of particles 
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crossing unit area of the network per second, is determined primarily by the backbone. 
Branches carry no current, and their presence or absence does not affect J so long as 
the particle density on the backbone is maintained constant. This would be the case 
if, for instance, opposite faces of the sample were in contact with reservoirs with an 
inexhaustible supply of particles. 

The drift velocity U, on the other hand, was defined in equation (10) as the length 
of the sample divided by the mean transit time. It measures the time spent by particles 
in the network, including excursions into side branches. Unlike the current, U is 
sensitive to the presence of branches. 

We state this explicitly as there has been some controversy recently. In particular, 
Gefen and Goldhirsch [ 151 have defined a velocity 6 for non-interacting particles on 
the random comb through the relation 

J = fipbb (29) 

where &, is the mean particle density on the backbone. fi is a local velocity through 
backbone links and is the same whether or not there are branches, as both J and p b b  

have that property. In contrast to C, the drift velocity U is a macroscopic velocity and 
would be the appropriate quantity to compare with measurements on tagged particles 
moving over macroscopic distances in a porous medium. For instance, in the problem 
of hydrodynamic dispersion, U governs the mean location of dye particles [34]. The 
drift velocity satisfies a relation analogous to equation (29), namely 

J = up. (30) 
This holds provided p is the mean density over all sites, including branch sites. 

and p d  < p < 1 separately below. 
Returning to particles with hard core exclusion, we discuss the regimes p c  < p < pd 

5.1. P c < P < P d  

All spanning connections have backbends on them and do not allow transmission of 
particles if g = 1 (infinitely strong field). Thus the current J and the drift velocity U 
both vanish in this limit. 

In large but finite fields, the current in the backbone drops (using equations (25) 
and (26)) as a power of (1 - g): 

J E ( 1  - g ) b i ' P ) .  (31) 
The exponent, which is proportional to the minimum backbend length required for 
infinitely long connections, diverges as p + p c .  Furthermore, the way in which U 
vanishes as g +  1 is similar to equation (31). 

In the intermediate and low g regimes, the behaviour is expected to be similar to 
that in the non-interacting case, namely a h e a r  rise at low g with slope proportional 
to diffusion constant, followed by a drop (see figure 6 ( a ) ) .  

Directed connections now span the sample and the single most important difference 
with the previous case is that now the current is non-zero as g +  1. In this limit, the 
mean time spent in a branch approaches a finite value, while it takes infinitely long 
to traverse a backbend. Consequently the current is carried only by the directed 
backbone, i.e. the backbone of the infinite cluster in the directed percolation problem. 
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Figure 6.  The current against bias (schematic) when ( a )  p is between p' and  pdr and  ( b )  
when p is larger than pd.  In the latter case, the g = 1 current does not Lanish, but the 
dependence on field is monotonic only if p is large enough. 

The mobility of each particle through directed paths is quite high; at  low density, 
the single-particle result 2 W is approached. However, for p just larger than P d ,  the 
current J is low as connections are sparse. The low-flux current J is proportional to 
the number of inlets per unit area on the face (or  any other cross section) of the sample. 
Thus we expect 

J ( g = 1 ) cc P:; (32) 

where Pd,'; is the fraction of sites in the directed backbone. As J ( g  = 1)  is small for 
p b P d ,  the dependence of J of g continues to be non-monotonic (figure 6( b ) ) .  As p 
increases, so does J ( g  = l ) ,  and eventually the non-monotonicity as a function of g is 
lost (figure 6 ( b ) j .  The drift velocity is expected to be qualitatively similar to that in 
the random comb and, in particular, to exhibit the non-monotonic behaviour apparent 
in figure 2 when the density of particles is fixed. 

6.  Conclusion 

For non-interacting particles, both branches and backbends act as traps, as the field 
tends to push particles towards local minima of potential energy. The primary effect 
of interparticle interactions is to reduce the accessibility, and hence the effectiveness, 
of traps. A particle at the bottom of a long branch takes much longer to escape when 
there are hard core interactions than when there are none (equation (8) ) .  But the 
branch bottom is inaccessible to most particles on the backbone because of intervening 
particles in the branch. The combination of extreme inaccessibility and extremely long 
trapping times (in the rare event that a particle is trapped) leads to a finite mean time 
spent in a branch. Thus the drift velocity is finite, as illustrated by the exact calculation 
on the random comb in § 3. 

The notion of limited accessibility applies to backbends too. Consequently, the 
current is rate-limited by i; the minimal backbend length required to form infinite 
connections. 

The question arises: how low must the density be in order that results resemble 
those in the absence of interactions? The answer is that the interaction-induced length 
A ( p , ,  g )  = L ( g j  ln( l /po)  introduced in § 3 must be much larger than the correlation 
length Z. This condition guarantees that in most branches the density is low enough 
so that essentially single-particle dynamics operates. Moreover, close to p c  typical 
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backbend lengths are also proportional to 6; the condition A >> 6 ensures that the time 
between arrivals of successive particles exceeds that required by a single particle to 
clear a typical backbend, implying particles do not accumulate in such backbends. Of 
course, even when A >> 6, very long branches and backbends (with depths >> A )  do fi l l  
up with particles and become much less accessible and effective as traps. Consequently, 
the velocity remains finite (though small) in the region L ( g )  < 5 whereas it would have 
vanished for non-interacting particles. 

In very strong fields (A<< 6 )  almost all backbends and branches are full and thus 
relatively inaccessible. A large fraction of the current is then carried by the sub- 
backbone composed of paths on which every backbend is smaller than some minimal 
length 5 ( p ) .  This length vanishes above pd and most of the current is carried by the 
directed backbone. 

In their discussion of disordered semiconductors, Bottger and Bryskin envisage 
transport through paths in which all backbend lengths are bounded. However, it would 
seem that their conclusions are valid for interacting particles and not for non-interacting 
Boltzmann particles, which is the case they address (see equation (4) of [4]). For 
non-interacting particles which sample traps of all depths the high-field mobility on 
the percolation cluster vanishes [7-91 and the 5 backbone plays no special role. If the 
current is to be channelled through the 5 backbone, interactions are essential in order 
to limit accessibility to backbends and branches with yet longer trapping times. 

We have addressed only steady-state properties in this paper. However, the 
approach to the steady state is likely to be slow-perhaps anomalously so-as back- 
bends both on the backbone and in branches must be surmounted before the steady-state 
density is established in the full network. 

It would be interesting to have an experimental test of these predictions, in particular 
of the non-monotonic dependence of the velocity on the bias. The assumed short-ranged 
(essentially contact) nature of the interactions may place some restrictions on the types 
of systems that could be described by this treatment. The effects discussed here might 
be observed in experiments (like sedimentation) involving particle motion through 
randomly porous media. 
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